AUSTRALIAN STANDARD
AS/CA S042.1:2018
Requirements for connection to an air interface of a Telecommunications Network—Part 1: General
Australian Standard – Requirements for connection to an air interface of a Telecommunications Network — Part 1: General

This Standard was issued in draft form for public comment as DR AS/CA S042.1:2017

First published as AS/ACIF S042.1:1999
Second edition as AS/ACIF S042.1:2006
Third edition as AS/ACIF S042.1:2008
Fourth edition as AS/CA S042.1:2010
Fifth edition as AS/CA S042.1:2015, published on 14 August 2015
Sixth edition as AS/CA S042.1:2018, published on 12 April 2018

ISBN: 1 74000 452 3

Communications Alliance Ltd (formerly Australian Communications Industry Forum Ltd) was formed in 2006 to provide a unified voice for the Australian communications industry and to lead it into the next generation of converging networks, technologies and services.

Disclaimers

1. Notwithstanding anything contained in this Standard:

   (a) Communications Alliance disclaims responsibility (including where Communications Alliance or any of its officers, employees, agents or contractors has been negligent) for any direct or indirect loss, damage, claim, or liability any person may incur as a result of any:

      (i) reliance on or compliance with this Standard;

      (ii) inaccuracy or inappropriateness of this Standard; or

      (iii) inconsistency of this Standard with any law; and

   (b) Communications Alliance disclaims responsibility (including where Communications Alliance or any of its officers, employees, agents or contractors has been negligent) for ensuring compliance by any person with this Industry.

2. The above disclaimers will not apply to the extent they are inconsistent with any relevant legislation.

Copyright

© Communications Alliance Ltd 2018

This document is copyright and must not be used except as permitted below or under the Copyright Act 1968. You may reproduce and publish this document in whole or in part for your or your organisation’s own personal or internal compliance, educational or non-commercial purposes. You must not alter or amend this document in any way. You must not reproduce or publish this document for commercial gain without the prior written consent of Communications Alliance. Organisations wishing to reproduce or publish this document for commercial gain (i.e. for distribution to subscribers to an information service) should apply to Communications Alliance by contacting the Communications Alliance Commercial Manager at info@commsalliance.com.au.
FOREWORD

General

This Standard has been prepared by Communications Alliance and most recently revised by the WC72: New Cellular and IMT Customer Equipment Requirements Working Committee. It is one of a series of Telecommunication Standards developed under the Memorandum of Understanding between the Australian Communications Authority (ACA) and the Australian Communications Industry Forum (ACIF).

Note: On 1 July 2005 the ACA became the Australian Communications and Media Authority (ACMA) and the Memorandum of Understanding continues in effect as if the reference to the ACA were a reference to ACMA. Communications Alliance was formed in 2006 and continues the functions previously fulfilled by ACIF.

This Standard is a revision of AS/CA S042.1: 2015 Requirements for connection to an air interface of a Telecommunications Network—Part 1: General. It is the result of a consensus among representatives on the Communications Alliance Working Committee to produce it as an Australian Standard.

The requirements in this Standard are consistent with the aims of s376 of the Telecommunications Act 1997. Specifically these aims are—

(a) protecting the integrity of a Telecommunications Network or facility;
(b) protecting the health and safety of persons;
(c) ensuring access to emergency services; and
(d) ensuring interoperability with a standard telephone service (STS).

AS/CA S042 consists of the following parts under the general title Requirements for connection to an air interface of a Telecommunications Network:

- Part 1: General
- Part 2: CDMA (IS-95) (withdrawn)
- Part 3: GSM Customer Equipment
- Part 4: IMT Customer Equipment

It should be noted that some Customer Equipment (CE) may also need to comply with requirements in other Standards or other applicable technology-specific Parts of this Standard.

Applicable electrical safety Standards, EMC, Radiocommunications and EMR Standards may apply under Commonwealth or State/Territory laws, or both.

Intellectual property rights

Equipment which is manufactured to comply with this Standard may require the use of technology which is protected by patent rights in Australia. Questions about the availability of such technology, under licence or otherwise, should be directed to the patent holder or Australian licensee (if known) or through enquiry.
Standards revision

Australian Standards (AS/ACIF and AS/CA Standards) developed by Communications Alliance are updated according to the needs of the industry, by amendments or revision. Users of these Standards should make sure that they possess the latest amendments or editions. Representations concerning the need for a change to this AS/CA Standard should be addressed to—

The Project Manager
Customer Equipment and Cable Reference Panel
Communications Alliance
PO Box 444
Milsons Point NSW 1565

Regulatory notice

Upon publication, this technical standard has effect under the Telecommunications (Labelling Notice for Customer Equipment and Customer Cabling) Instrument 2015 made by the Australian Communications and Media Authority.

The ACMA is a Commonwealth authority with statutory powers to impose requirements concerning telecommunications Customer Equipment and Customer Cabling.

The ACMA requires Australian manufacturers and importers, or their Australian agents, of specified items of Customer Equipment and Customer Cabling to establish compliance with Standards such as this. Items are required to be labelled in accordance with the applicable labelling notices.

Details on current compliance arrangements can be obtained from the ACMA website at http://www.acma.gov.au or by contacting the ACMA below at:

Australian Communications and Media Authority
PO Box 13112
Law Courts PO
Melbourne VIC 8010
Australia

Telephone: +61 3 9963 6800
Facsimile: +61 3 9963 6899
TTY: +61 3 9963 6948
INTRODUCTION

This introduction for the AS/CA S042.1:2018 Requirements for connection to an air interface of a Telecommunications Network—Part 1: General Standard is not an authoritative section of this Standard and is only provided as guidance for the user of the Standard to outline its objectives, the factors that have been taken into account in its development and to list the principal differences between the new and the previous edition.

The reader is directed to the clauses of Part 1 for the specific requirements and to the ACMA for the applicable telecommunications labelling and compliance arrangements.

Note: Further information on the telecommunications labelling and compliance arrangements can be found in The Telecommunications Labelling (Customer Equipment and Customer Cabling) Notice (the TLN). The TLN can be obtained from the Australian Communications and Media Authority (ACMA) website at www.acma.gov.au.

The objective of Part 1 is to specify the general requirements and test methods for CE for use in connection with a PMTS or a Satellite Service in order to meet the regulatory arrangements for such equipment in Australia. Additional requirements for specific technologies are addressed in other Parts of AS/CA S042.

The objective of this revision is to address the emerging wireless technology developments, including Voice over LTE (VoLTE) and Voice over Wi-Fi (VoWiFi) services and services utilizing ISIMs (IP Multimedia Services Identity Modules), which are being deployed for Australian mobile networks.

CE can employ identity modules (SIM, USIM, ISIM) that are based on either removable UICC or embedded (in the CE) and non-removable eUICC. Unless specifically stated, the requirements in this Standard do not differentiate between these configurations of CE and identity modules.

The principal differences between this edition of AS/CA S042.1 and the previous edition are—

(a) updates to the references (Section 3);
(b) addition of new wireless technologies including VoLTE, VoWiFi, ISIM, eUICC, GUTI and IMS and introducing the appropriate definitions (Section 4);
(c) adding the term ‘3GPP technologies’ and introducing the appropriate definition (Section 4);
(d) amending the definitions of ‘addressable device’, ‘identity module’ and ‘public mobile telecommunications service’ (Section 4);
(e) adding a new definition for ‘Emergency Call’ and ‘Emergency Service Number’ (Section 4);
(f) amending the general emergency service access requirement (Clause 5.1.1);
(g) citing the relevant ETSI TS Standards against applicable emergency service access requirements for PMTS CE (Clause 5.2.2.1);
(h) updating and clarifying the requirements for the Emergency Service Number 106 (Clauses 5.1 and 5.2.);

(i) removal of user indicator requirements for PMTS CE (Clause 5.2.3) and Satellite CE (Clause 5.3.3);

(j) amending the test methods for call procedures (Clause 6.2); and

(k) addition of an informative Appendix B providing a linkage between the requirements in this Standard and the ETSI Standards.
# TABLE OF CONTENTS

1. **INTERPRETATIVE GUIDELINES**
   - 1.1 Categories of requirements
   - 1.2 Compliance statements
   - 1.3 Definitions, expressions and terms
   - 1.4 Notes
   - 1.5 References
   - 1.6 Units and symbols
   - 1.7 Parts of Standards

2. **SCOPE**

3. **REFERENCES**

4. **ABBREVIATIONS AND DEFINITIONS**
   - 4.1 Abbreviations
   - 4.2 Definitions

   4.2.1 3GPP technologies
   4.2.2 Acoustic shock
   4.2.3 Addressable device
   4.2.4 Air interface
   4.2.5 Carriage Service Provider
   4.2.6 Carrier
   4.2.7 Customer Equipment (CE)
   4.2.8 Drum Reference Point (DRP)
   4.2.9 Ear Reference Point (ERP)
   4.2.10 embedded Universal Integrated Circuit Card (eUICC)
   4.2.11 Emergency Call
   4.2.12 Emergency Service Number
   4.2.13 Gateway Device
   4.2.14 Globally Unique Temporary Identifier (GUTI)
   4.2.15 Handset
   4.2.16 Identity module
   4.2.17 International Mobile Equipment Identity (IMEI)
   4.2.18 International Mobile Subscriber Identity (IMSI)
   4.2.19 IMT
   4.2.20 IMT Customer Equipment (IMT CE)
   4.2.21 IMT-2000
   4.2.22 IMT-Advanced
   4.2.23 IMS Subscriber Identity Module (ISIM)
   4.2.24 Local Port
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.25</td>
<td>Mobile Station Equipment</td>
<td>11</td>
</tr>
<tr>
<td>4.2.26</td>
<td>Multi-service CE</td>
<td>11</td>
</tr>
<tr>
<td>4.2.27</td>
<td>Public Key Certificate (PKC)</td>
<td>12</td>
</tr>
<tr>
<td>4.2.28</td>
<td>Public Mobile Telecommunications Service (PMTS)</td>
<td>12</td>
</tr>
<tr>
<td>4.2.29</td>
<td>Satellite Service</td>
<td>12</td>
</tr>
<tr>
<td>4.2.30</td>
<td>Standard Telephone Service (STS)</td>
<td>12</td>
</tr>
<tr>
<td>4.2.31</td>
<td>Standard Telephone Service (STS) Access Mode</td>
<td>12</td>
</tr>
<tr>
<td>4.2.32</td>
<td>Subscriber Identity Module (SIM)</td>
<td>12</td>
</tr>
<tr>
<td>4.2.33</td>
<td>Telecommunications Device Identifier</td>
<td>12</td>
</tr>
<tr>
<td>4.2.34</td>
<td>Telecommunications Network</td>
<td>13</td>
</tr>
<tr>
<td>4.2.35</td>
<td>Universal Integrated Circuit Card (UICC)</td>
<td>13</td>
</tr>
<tr>
<td>4.2.36</td>
<td>Universal Subscriber Identity Module (USIM)</td>
<td>13</td>
</tr>
<tr>
<td>4.2.37</td>
<td>User Equipment</td>
<td>13</td>
</tr>
<tr>
<td>4.2.38</td>
<td>Voice over LTE (VoLTE)</td>
<td>13</td>
</tr>
<tr>
<td>4.2.39</td>
<td>Voice over Wi-Fi (VoWiFi)</td>
<td>13</td>
</tr>
</tbody>
</table>

5 REQUIREMENTS

5.1 General

5.1.1 Emergency service access   14
5.1.2 Multi-service CE            14
5.1.3 Gateway Device             15

5.2 CE used in connection with a PMTS

5.2.1 Application                15
5.2.2 Emergency service access   15

5.3 CE used in connection with a Satellite Service

5.3.1 Application                18
5.3.2 Emergency service access   18

5.4 Provision of power-fail advice

5.5 Acoustic Safety

5.5.1 Maximum Sound Pressure Level (SPL)          19
5.5.2 Recommended Maximum Sound Pressure Levels (SPLs) (informative)  19

5.6 Telecommunications Device Identifier

6 TESTING

6.1 Verification of compliance with requirements 22

6.2 Test calls for Emergency service access

6.2.1 Making a test call for CE used in connection with a PMTS 22

6.2.2 Making a test call for CE used in connection with a Satellite Service 23

6.2.3 Test call identification 24
6.2.4 Test call notice 24

6.3 Acoustic Safety 24

6.3.1 Maximum RMS output 24
6.3.2 Volume control 25
6.3.3 Step test parameters 25
6.3.4 Maximum digital code 25

APPENDICIES

A STEPPED PULSED STIMULI FOR TIME DEPENDENT LIMITING TEST 26
A1 Introduction 26
A2 Test frequency list 27
A3 Telephone products tracks 27
B ETSI Standard references (INFORMATIVE) 29

FIGURES

1 Test circuit for Sound Pressure Level tests 25

TABLES

A1 Test frequency list 27
A2 Alignment tones 27
A3 Digital products track test 28
1 INTERPRETATIVE GUIDELINES

1.1 Categories of requirements

This Standard contains mandatory requirements as well as provisions that are recommendatory only. Mandatory requirements are designated by the words ‘shall’ or ‘shall not’. All other provisions are voluntary.

1.2 Compliance statements

Compliance statements, in italics, suggest methodologies for demonstrating CE’s compliance with the requirements.

1.3 Definitions, expressions and terms

If there is any conflict between the definitions used in this Standard and the definitions used in the Telecommunications Act 1997, the definitions in the Act take precedence.

1.4 Notes

Text denoted as ‘Note’ is for guidance in interpretation and is shown in smaller size type.

1.5 References

(a) Applicable editions (or versions) of other documents referred to in this Standard are specified in Section 3: REFERENCES.

(b) If a document refers to another document, the other document is a sub-referenced document.

(c) Where the edition (or version) of the sub-referenced document is uniquely identified in the reference document, then that edition (or version) applies.

(d) Where the edition (or version) of the sub-referenced document is not uniquely identified in the reference document, then the applicable edition (or version) is that which is current at the date the reference document is legislated under the applicable regulatory framework, or for a non-legislated document, the date upon which the document is published by the relevant standards organisation.

(e) A number in square brackets ‘[ ]’ refers to a document listed in Section 3: REFERENCES.

1.6 Units and symbols

In this Standard the International System (SI) of units and symbols is used in accordance with Australian Standard AS ISO 1000 [1].
1.7 **Parts of Standards**

CE scoped by this Standard is to comply with the applicable technology-specific Part(s) of this Standard.
2 SCOPE

2.1 This Standard applies to CE that is designed or intended for use in connection with—

(a) a PMTS and is an addressable device; or

(b) a Satellite Service and is an addressable device;

or both.

2.2 This Standard does not apply to CE which is not an addressable device such as GPS terminal and satellite navigation system.

2.3 CE is not excluded from the scope of this Standard by reason only that it is capable of performing functions additional to those described in this Standard.

2.4 For additional technical requirements applying to a particular CE, this Standard should be read in conjunction with those Standards listed in the REFERENCES of this Standard.
3 REFERENCES

For dated references, only the edition cited applies. However, parties to agreements based on this Standard are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Australian Standards</strong></td>
<td></td>
</tr>
<tr>
<td><strong>AS/CA Standards</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Telecommunications Network</td>
</tr>
<tr>
<td><strong>Communications Alliance Codes</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amendment No.1/2015)</td>
</tr>
<tr>
<td><strong>Communications Alliance Guidelines</strong></td>
<td></td>
</tr>
<tr>
<td><strong>IEC Standard</strong></td>
<td></td>
</tr>
<tr>
<td><strong>ITU-R Recommendation</strong></td>
<td></td>
</tr>
<tr>
<td>[7] M.1224-1</td>
<td>Vocabulary of terms for International Mobile Telecommunications (IMT)</td>
</tr>
<tr>
<td><strong>ITU-T Recommendation</strong></td>
<td></td>
</tr>
<tr>
<td>[10] X.509 (10/16)</td>
<td>Information technology - Open Systems Interconnection - The</td>
</tr>
<tr>
<td></td>
<td>Directory; Public-key and attribute certificate frameworks</td>
</tr>
<tr>
<td><strong>ETSI Publications</strong></td>
<td></td>
</tr>
<tr>
<td>[11] ETSI TR 102 300-5 V1.4.1</td>
<td>Terrestrial Trunked Radio (TETRA); Voice plus Data (V+D);</td>
</tr>
<tr>
<td>(2015-06)</td>
<td>Designers’ guide Part 5: Guidance on numbering and addressing</td>
</tr>
<tr>
<td>[12] ETSI TS 103 383</td>
<td>Smart Cards; Embedded UICC; Requirements Specification;</td>
</tr>
<tr>
<td>Publication</td>
<td>Title</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ETSI TS 122 016 V14.0.0 (2017-03)</td>
<td>Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; International Mobile station Equipment Identities (IMEI) (3GPP TS 22.016 version 14.0.0 Release 14)</td>
</tr>
<tr>
<td>ETSI TS 122 101 V14.6.0 (2017-03)</td>
<td>Universal Mobile Telecommunications System (UMTS); LTE; Service aspects; Service principles (3GPP TS 22.101 version 14.6.0 Release 14)</td>
</tr>
<tr>
<td>ETSI TR 121 905 V14.0.0 (2017-03)</td>
<td>Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; Vocabulary for 3GPP Specifications (3GPP TR 21.905 version 14.0.0 Release 14)</td>
</tr>
<tr>
<td>ETSI TS 124 008 V13.8.0 (2017-01)</td>
<td>Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; Mobile radio interface Layer 3 specification; Core network protocols; Stage 3 (3GPP TS 24.008 version 13.8.0 Release 13)</td>
</tr>
<tr>
<td>ETSI TS 122 022 V14.0.0 (2017-03)</td>
<td>Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; Personalisation of Mobile Equipment (ME); Mobile functionality specification (3GPP TS 22.022 version 14.0.0 Release 14)</td>
</tr>
<tr>
<td>ETSI TS 124 229 V14.4.0 (2017-07)</td>
<td>Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; IP multimedia call control protocol based on Session Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage 3 (3GPP TS 24.229 version 14.4.0 Release 14)</td>
</tr>
<tr>
<td>ETSI TS 124 301 V13.8.0 (2017-01)</td>
<td>Universal Mobile Telecommunications System (UMTS); LTE; Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS); Stage 3 (3GPP TS 24.301 version 13.8.0 Release 13)</td>
</tr>
<tr>
<td>ETSI TS 131 111 V11.13.0 (2017-01)</td>
<td>Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; Universal Subscriber Identity Module (USIM) Application Toolkit (USAT) (3GPP TS 31.111 version 11.13.0 Release 11)</td>
</tr>
<tr>
<td>Publication</td>
<td>Title</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td><strong>3GPP Publications</strong></td>
<td></td>
</tr>
<tr>
<td>[21] 3GPP TS 23.003 V15.0.0 (2017-06)</td>
<td>Technical Specification Group Core Network and Terminals; Numbering, addressing and identification</td>
</tr>
<tr>
<td><strong>Other publications</strong></td>
<td></td>
</tr>
<tr>
<td>[22] IR.92</td>
<td>GSMA Permanent Reference Document IMS Profile for Voice and SMS [<a href="https://www.gsma.com/newsroom/gsmado">https://www.gsma.com/newsroom/gsmado</a> cuments/]</td>
</tr>
</tbody>
</table>
4 ABBREVIATIONS AND DEFINITIONS

For the purposes of this Standard, the following abbreviations and definitions apply:

4.1 Abbreviations

3G  The third generation of mobile phone technologies covered by the ITU IMT family
3GPP 3rd Generation Partnership Project
4G The fourth generation of mobile phone technologies covered by the ITU IMT family
ACA Australian Communications Authority
ACE Australian Communications Exchange
ACMA Australian Communications and Media Authority
ACIF Australian Communications Industry Forum
AS Australian Standard
CDMA Code Division Multiple Access
CE Customer Equipment
CSFB Circuit-Switched FallBack
CSP Carriage Service Provider
DoC Declaration of Conformity
DRP (ear) Drum Reference Point
ECC Emergency Call Code
ECP Emergency Call Person
EDGE Enhanced Data rates for GSM Evolution
eUICC embedded Universal IC Card
EMC Electromagnetic Compatibility
EMR Electromagnetic Radiation
ERP Ear Reference Point
ETSI European Telecommunications Standard Institute
E-UTRA Evolved UTRA. Also referred to as LTE.
FDD Frequency Division Duplexing
GPRS General Packet Radio Service
GPS Global Positioning System
GSM Global System for Mobile Communications
GSMA GSM Association
GUTI Globally Unique Temporary Identifier
IC Integrated Circuit
IEC International Electrotechnical Commission
IMEI International Mobile Equipment Identity
IMS IP Multimedia Subsystem
IMSI International Mobile Subscriber Identity
IMT International Mobile Telecommunications
4.2 Definitions

4.2.1 3GPP technologies

3GPP technologies as specified by ETSI and 3GPP.
Note 1: Includes GSM (2G or second generation), GPRS and EDGE (commonly referred to as 2.5G), 3GPP based IMT 2000 and IMT Advanced (3G or third generation, 4G or fourth Generation) or technologies such as UTRA and E-UTRA.

Note 2: There are a number of IMT technologies under ITU-R Recommendation M.1457-13 [8] which cannot be classified as being 3GPP technologies such as OFDMA TDD WMAN and CDMA TDD.

4.2.2 Acoustic shock
Any temporary or permanent disturbance of the functioning of the ear, or of the nervous system, which may be caused to the user of a telephone earphone by a sudden sharp rise in the acoustic pressure produced by it.

Note 1: Acoustic shock may include acoustic trauma, but can occur at sound levels considerably lower than those necessary to cause acoustic trauma.

Note 2: This definition is the one used by ETSI and ITU-T.

4.2.3 Addressable device
An addressable device is CE which can be identified by the Telecommunications Network operator for the purposes of two-way communications with that CE.

4.2.4 Air interface
A radio frequency (RF) link between CE and a Telecommunications Network.

4.2.5 Carriage Service Provider
Refer to s7 of the Telecommunications Act 1997.

4.2.6 Carrier
Refer to s7 of the Telecommunications Act 1997.

4.2.7 Customer Equipment (CE)
Refer to s7 of the Telecommunications Act 1997.

4.2.8 Drum Reference Point (DRP)
A point located at the end of the ear canal, corresponding to the ear-drum position.

4.2.9 Ear Reference Point (ERP)
A virtual point for geometric reference located at the entrance to the listener’s ear, traditionally used for calculating telephonometric loudness ratings.
4.2.10 embedded Universal Integrated Circuit Card (eUICC)
A UICC which is not easily accessible or replaceable, is not intended to be removed or replaced in the terminal, and enables the secure changing of subscriptions.

Note: The term originates from ‘embedded UICC’.

Refer to ETSI TS 103 383 [12].

4.2.11 Emergency Call
Refer to the Telecommunications (Emergency Call Service) Determination 2009.

4.2.12 Emergency Service Number
Refer to Part 3 of the Telecommunications Numbering Plan 2015.

4.2.13 Gateway Device
CE that—

(a) incorporates a Local Port and/or an RF interface; and

(b) does not incorporate any keys for the initiating of an Emergency Call to the emergency service numbers or an acoustic coupler device.

4.2.14 Globally Unique Temporary Identifier (GUTI)
A unique temporary identity to provide an unambiguous identification of the UE without revealing its permanent identity.

Refer to 3GPP TS 23.003 [21]

4.2.15 Handset
The part of the CE which is held by the user in conversation mode and has the acoustic transmitter and receiver transducers mounted in it.

4.2.16 Identity module
Means a subscriber identity module (SIM), a universal subscriber identity module (USIM) or an IMS (IP Multimedia Subsystem) Subscriber Identity Module (ISIM) which is used in the authentication procedures and contains the subscriber identity as well as other subscriber data.

4.2.17 International Mobile Equipment Identity (IMEI)
Is a unique number which is allocated to each individual mobile station (MS) equipment in the PLMN and unconditionally implemented by the MS manufacturer at the time of manufacture.

Refer to ETSI TS 122 016 [13].
4.2.18 International Mobile Subscriber Identity (IMSI)

Is a string of decimal digits that identifies a unique mobile terminal or mobile subscriber internationally.

Refer to ETSI TR 102 300-5 [11].

4.2.19 IMT

Root name that encompasses both IMT-2000 and IMT-Advanced collectively as specified in ITU-R Recommendation M.1224-1 [7].

4.2.20 IMT Customer Equipment (IMT CE)

CE that is designed or intended for use in connection with an IMT PMTS. IMT CE based upon UTRA FDD, E-UTRA FDD and E-UTRA TDD technologies has either a Subscriber Identity Module (SIM) or a Universal Subscriber Identity Module (USIM). An IMT CE includes all equipment including terminal adapters required for provision of speech teleservices, bearer and supplementary services.

4.2.21 IMT-2000


Note: The complete specification provides requirements for not only the IMT CE but also includes the infrastructure requirements.

4.2.22 IMT-Advanced

Previously known as systems beyond IMT-2000.

4.2.23 IMS Subscriber Identity Module (ISIM)

Means an application residing on the UICC that provides access to IP Multimedia Services.

Refer to ETSI TR 121 905 [15].

4.2.24 Local Port

Refer to AS/CA S003 [2].

4.2.25 Mobile Station Equipment

Is the term used in ETSI Publications to describe Customer Equipment (CE).

4.2.26 Multi-service CE

CE with STS Access Modes using multiple network interfaces, including, but not limited to, devices with satellite/3GPP or satellite/IMT network interfaces.
4.2.27 Public Key Certificate (PKC)
Means the public key of a user, together with some other information, rendered unforgeable by digital signature with the private key of the certification authority which issued it.
Refer to ITU-T X.509 [10].

4.2.28 Public Mobile Telecommunications Service (PMTS)
Refer to s32 of the Telecommunications Act 1997.
Note: An IMS-based voice over Wi-Fi service is included under the PMTS.

4.2.29 Satellite Service
Refer to the Telecommunications (Emergency Call Service) Determination 2009.

4.2.30 Standard Telephone Service (STS)
Refer to the Telecommunications (Consumer Protection and Service Standards) Act 1999.

4.2.31 Standard Telephone Service (STS) Access Mode
Means a CE mode of operation in which—
(a) a CE is connected to the Telecommunications Network;
(b) a CE is able to access a STS which is either a PMTS or a Satellite Service; and
(c) the STS access function of the CE is enabled, such that calls can be initiated for the purposes of voice communications.

Note 1: CE designed for initiating calls to a limited set of numbers, e.g. those connecting to an answering point which is not an ECP, are not considered to be operating in STS Access Mode. These devices typically store pre-programmed numbers.

Note 2: CE are not considered to be operating in STS Access Mode when they are operating in modes where they are unable to access a STS such as standby mode, screen save mode, games controller mode, camera mode, music player mode, email or messaging mode.

4.2.32 Subscriber Identity Module (SIM)
Means a physically removable module which is used in the authentication procedures and contains the subscriber identity as well as other subscriber data.

4.2.33 Telecommunications Device Identifier
Refer to s473.1 of the Criminal Code Act 1995.
Note 1: Means an IMEI for CE using 3GPP technologies.
Note 2: Means a PKC for CE using OFDMA TDD WMAN technologies.
4.2.34 Telecommunications Network
Refer to s374(1) of the Telecommunications Act 1997.

4.2.35 Universal Integrated Circuit Card (UICC)
A physically secure device, an IC card (or ‘smart card’), that can be inserted and removed from the terminal. It may contain one or more applications. One of the applications may be a USIM.

Refer to ETSI TR 121 905 [15].

4.2.36 Universal Subscriber Identity Module (USIM)
An application residing on the UICC used for accessing services provided by mobile networks, which the application is able to register on with the appropriate security.

Refer to ETSI TR 121 905 [15].

4.2.37 User Equipment
Is the term used in ETSI Publications to describe Customer Equipment (CE).

4.2.38 Voice over LTE (VoLTE)
A packet voice service over IP based upon LTE for access and IMS for call completion.

Refer to GSMA IR.92 [22]

4.2.39 Voice over Wi-Fi (VoWiFi)
A packet voice service over IP based upon Wi-Fi for access and IMS for call completion.
5 REQUIREMENTS

5.1 General

5.1.1 Emergency service access

CE designed for voice communications operating in STS Access Mode shall allow the initiating of an Emergency Call when connected to or intended for use in connection to the following carriage services:

<table>
<thead>
<tr>
<th>Emergency Service Number</th>
<th>PMTS 3GPP technologies</th>
<th>PMTS OFDMA TDD WMAN technology</th>
<th>Satellite Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Initiate</td>
<td>Initiate</td>
<td>Initiate</td>
</tr>
<tr>
<td>112</td>
<td>Initiate</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note 1: These requirements are specifically in reference to the capability of the CE for the initiating of an Emergency Call to the air interface. It does not place requirements on the network side [i.e. on the Carrier] of the air interface or for successful call completion.

Note 2: These requirements include all means of initiating an Emergency Call including, for example, numeric keys, alphanumeric keys, voice, motion and other non-keyed means. The requirements for manual keying are addressed in Clauses 5.2.2.1(d) and 5.3.2.

Note 3: 000 is the primary Emergency Service Number in Australia for access from both wireline and wireless services. 106 is a secondary Emergency Service Number in Australia which can only be accessed from fixed line services by TTYs. It is for the text-based Emergency Call service for people who are deaf or have hearing or speech impairment. 112 is a secondary Emergency Call service number in Australia which can only be accessed from PMTS employing 3GPP technologies. It is also the international standard emergency service number for PMTS employing 3GPP technologies.

Note 4: Voice communications also includes artificial voice.

Compliance with Clause 5.1.1 should be checked using the method described in Clause 6.2.

5.1.2 Multi-service CE

Multi-service CE shall comply with the requirements applicable to each service.

Note: The requirements described in Clause 5.2 for CE use in connection with a PMTS are not applicable if a multi-service CE is connected to a Satellite Service; and the requirements described in Clause 5.3 for CE use in connection with a Satellite Service are not applicable if a multi-service CE is connected to a PMTS.

Compliance with Clause 5.1.2 of Multi-service CE should be checked using the methods described in Clauses 5.2 and 5.3 for the applicable service.
5.1.3 Gateway Device

CE that functions as a Gateway Device shall comply with the requirements of Clauses 5.1.1, 5.1.2 and 5.4.

Note: To initiate a call to Emergency Service Numbers 000 and 106 in STS Access Mode, a Gateway Device may also require the connection of other equipment, such as a PSTN handset via a Local Port, or a cordless phone via an RF interface.

Compliance with Clause 5.1.3 of Gateway Devices should be checked using the methods described in Clauses 5.1.1, 5.1.2 and 5.4.

5.2 CE used in connection with a PMTS

5.2.1 Application

The requirements of Clause 5.2 are applicable to CE connected to or intended for use in connection with a PMTS and operating in STS Access Mode.

5.2.2 Emergency service access

5.2.2.1 Emergency service number

(a) Firmware

(i) CE using 3GPP technologies shall store the Emergency Service Numbers 000 and 112 in its firmware in accordance with ETSI TS 122 101 [14].

(ii) CE using 3GPP technologies shall not store the Emergency Service Number 106 in its firmware.

(iii) Where an identity module is not present in the CE, CE using 3GPP technologies shall allow the initiating of an Emergency Call to the Emergency Service Numbers 000 and 112 stored in its firmware in accordance with ETSI TS 122 101 [14].

Compliance with Clause 5.2.2.1(a) should be checked using the method described in Clause 6.2.1.

(b) Mobile identity

(i) Where an identity module is not present in the CE, CE using 3GPP technologies shall send an IMEI to the Telecommunications Network when it is initiating an Emergency Call to the Emergency Service Numbers 000 or 112 in accordance with ETSI TS 124 008 [16] and ETSI TS 124 301 [19].

(ii) Where an identity module is present in the CE, CE using 3GPP technologies shall send an IMEI to the Telecommunications Network when it is initiating an Emergency Call to the Emergency Service Numbers 000 or 112 in the following call cases:
(A) Identity module is blocked as per ETSI TS 124 008 [16] and ETSI TS 124 301 [19].

(B) Identity module is PIN enabled, waiting for PIN input as per ETSI TS 124 008 [16] and ETSI TS 124 301 [19].

(C) Identity module is invalidated by the Telecommunications Network as per ETSI TS 124 008 [16].

(D) Incorrect identity module inserted as per ETSI TS 122 022 [17].

(E) Damaged or faulty identity module.

(F) IMS Emergency Call without emergency registration as per ETSI 124 229 [18].

(iii) Where an identity module is present in the CE, CE using 3GPP technologies shall send a TMSI/IMSI/GUTI to the Telecommunications Network when it is initiating an Emergency Call to the Emergency Service Numbers 000 or 112 excluding call cases scoped under Clause 5.2.2.1(b)(ii) as per ETSI TS 124 008 [16], ETSI TS 124 301 [19] and ETSI TS 124 229 [18].

Note: At time of publication, typical technologies requiring identity modules include 3GPP technologies.

Compliance with Clause 5.2.2.1(b) should be demonstrated by way of a manufacturer’s DoC to the applicable Emergency Call related mobile identity requirements (refer to Appendix B in this Standard) in ETSI TS 124 008 [16], ETSI TS 124 301 [19] and ETSI TS 124 229 [18].

(c) ECC field

Where an identity module is present in the CE excluding the call cases scoped under Clause 5.2.2.1(b)(ii) CE shall—

(i) be able to read the ECC field on the identity module; and

(ii) allow the initiating of an Emergency Call to the Emergency Service Numbers 000 and 112 stored in the ECC field.

Note: C536 [4] specifies that CSPs must ensure that new Identity Modules supplied by CSPs to their Customers are correctly programmed with 000 and 112 in the ECC field of the Identity Module. There are no requirements in C536 [4] to populate 106 in the ECC field of the Identity Module.

Compliance with Clause 5.2.2.1(c) should be checked using the method described in Clause 6.2.1.
(d) Numeric keys

By the user manually entering the digits at the time the connection is required, CE that incorporates numeric keys for the primary purpose of initiating calls—

(i) **shall** allow the initiating of an Emergency Call to the Emergency Service Number 000; and

(ii) for CE using 3GPP technologies, **shall** allow the initiating of an Emergency Call to the Emergency Service Number 112.

Note 1: Numeric keys include physical buttons and screen-based ‘soft’ keys found on CE.

Note 2: If numeric keys remain visible under any lock condition (e.g. software or hardware lock) then the requirements of this Clause apply.

Note 3: CE may have means other than numeric keys for call setup, e.g. alphanumeric keys, voice, motion and other non-keyed means. There is no requirement placed on these under Clause 5.2.2.1(d) as these are addressed in Clause 5.1.1.

Compliance with Clause 5.2.2.1(d) should be checked using the method described in Clause 6.2.1.

(e) Emergency call safeguard

When complying with the requirements for emergency service access outlined in Clause 5.2.2, CE should be designed in such a manner to minimise the accidental or unintentional initiation of Emergency Calls.

Note: For a dedicated Emergency Call button, this could be achieved by a two stage process requiring a user to confirm their intention to initiate an Emergency Call prior to the Emergency Call actually being initiated.

Compliance with Clause 5.2.2.1(e) should be checked by operation and inspection.

(f) Locks

When the CE is in any lock or unlock condition, including security code, key lock and blocked identity module, **CE shall** either—

(i) allow the initiating of an Emergency Call to the Emergency Service Numbers 000 or 112; or

(ii) provide directions for the user to disable the lock where CE prevents initiating of an Emergency Call to the Emergency Service Numbers 000 or 112 when a lock is enabled.
In (f)(ii) the directions for the user to disable the lock shall be made available to the user on the CE either before or during an attempt to call the Emergency Service Number 000 or 112.

Compliance with Clause 5.2.2.1(f) should be checked using the method described in Clause 6.2.1.

5.2.2.2 Special flags and special signalling

5.2.2.2.1 Emergency service numbers 000 and 112

CE using 3GPP technologies designed for voice communications shall activate the Emergency Call procedure for the Emergency Service Number 000 in the same manner as it would initiate the Emergency Call procedure for the Emergency Service Number 112.

Note: This requirement may require the CE, when initiating an Emergency Call to 000, to raise special flags or use special signalling protocols as required by ETSI TS 124 008 [16] that defines the procedure for the initiating of an Emergency Call to the Emergency Service Number 112.

5.2.2.2.2 Emergency service number 106

CE using 3GPP technologies shall not—

(a) treat calls to 106 as emergency calls; or

(b) activate the Emergency Call procedure for calls to 106.

Compliance with Clause 5.2.2.2 should be checked by operation and inspection.

5.3 CE used in connection with a Satellite Service

5.3.1 Application

The requirements of Clause 5.3 are applicable to CE connected to or intended for use in connection with a Satellite Service and operating in STS Access Mode.

5.3.2 Emergency service access

By the user manually entering the digits at the time the connection is required, CE designed for voice communications that incorporates numeric keys for the primary purpose of initiating calls shall allow the initiating of an Emergency Call to the Emergency Service Number 000.

Note 1: Numeric keys include physical buttons and screen-based ‘soft’ keys found on CE.

Note 2: If numeric keys remain visible under any lock condition (e.g., software or hardware lock), then the requirements of this Clause apply.

Note 3: CE may have means other than numeric keys for call setup, e.g., alphanumeric keys, voice, motion and other non-keyed means.
There is no requirement placed on these under Clause 5.3.2 as these are addressed in Clause 5.1.1.

Compliance with Clause 5.3.2 should be checked using the method described in Clause 6.2.2.

5.4 Provision of power-fail advice

Mains-powered CE designed for voice communications shall have a warning notice included in or with the CE documentation, if the CE does not continue to operate for more than 30 minutes after the loss of mains power.

Suggested wording for the warning notice is shown below and should also be placed on the outside surface of the CE’s packaging.

**Warning**

This equipment may not work when mains power fails

Compliance with Clause 5.4 may be checked by inspection.

5.5 Acoustic Safety

5.5.1 Maximum Sound Pressure Level (SPL)

The maximum RMS Sound Pressure Level (SPL) output for voice communications from the CE shall be less than or equal to 120 dBA at the Ear Reference Point (ERP) or the equivalent at the Drum Reference Point (DRP) when any user adjustable receiver volume control is set to maximum and when measured using ‘RMS’, ‘F’ or ‘Fast’ settings of sound level meters as defined in IEC 61672-1 [6] or equivalent short term RMS SPL.

Note 1: The choice of acoustic coupler and artificial ear is to be in accordance with ITU-T Rec. P.57 [9].

Note 2: Conversion between DRP and ERP for narrow band stimuli is to be in accordance with ITU-T Rec. P.57 [9].

Note 3: The requirement in Clause 5.4.1 is based upon the requirements in AS/ACIF S004 [3]. AS/ACIF S004 [3] typically applies to CE used for fixed telephony.

Note 4: Refer to ACIF G616 [5] for additional information related to the use of CE for mobile telephony.

5.5.2 Recommended Maximum Sound Pressure Levels (SPLs) (informative)

5.5.2.1 General

The RMS Sound Pressure Level (SPL) output for all audible outputs other than voice communications from the CE should be less than or equal to 120 dBA at the Ear Reference Point (ERP) or the equivalent at the Drum Reference Point (DRP) when any user adjustable
volume control is set to maximum and when measured using ‘RMS’, ‘F’ or ‘Fast’ settings of sound level meters as defined in IEC 61672-1 [6] or equivalent short term RMS SPL.

Methods to achieve this could include—

(a) an adaptation of the SPL output based on information about the proximity of the CE and the user; or

(b) the use of more than one transducer for production of audible output, with the higher SPL output being produced by a transducer not intended to be placed next to or in an ear.

5.5.2.2 SPL output exceeding 120 dBA

Where the RMS SPL output from the CE exceeds 120 dBA at the ERP or the equivalent at the DRP then there should be control of the initial SPL such as a ramping up of the output so the SPL is—

(a) initially less than or equal to 120 dBA at the Ear Reference Point (ERP) or the equivalent at the Drum Reference Point (DRP);

(b) rises in increments no greater than 6 dB;

(c) rises at a rate not greater than 6 dB/second; and

(d) rises to a maximum within not less than 6 seconds.

Note 1: The choice of acoustic coupler and artificial ear is to be in accordance with ITU-T Rec. P.57 [9].

Note 2: Conversion between DRP and ERP for narrow band stimuli is to be in accordance with ITU-T Rec. P.57 [9].

Note 3: Refer to ACIF G616 [5] for additional information related to the use of CE for mobile telephony.

Note 4: These recommendations arise from a balancing of—

(i) a need to protect users from CE from acoustic shock, particularly when the CE is located close to a user’s ear;

(ii) the risk of acoustic shock relative to the level of usage of CE (e.g. mobile phones) by the populations; and

(iii) the utility of CE that can produce high SPLs, particularly in a noisy environment when the CE is not located close to the user.

Note 5: Ramping up of an audible output can provide some protection against the risk of acoustic shock by giving the user the opportunity to move the CE away from their ear before the CE produces its maximum SPL.

Compliance with Clause 5.5 should be checked using the method described in Clause 6.3.
5.6 Telecommunications Device Identifier

CE using—

(a) 3GPP technologies; or

(b) OFDMA TDD WMAN technologies

shall have a telecommunications device identifier.

Compliance with Clause 5.6 should be demonstrated by way of a manufacturer's DoC and inspection.
6 TESTING

6.1 Verification of compliance with requirements

Compliance with all mandatory requirements in this AS/CA Standard is to be verified. This may be done by direct measurement, modelling and analysis, operation or inspection.

Methods for demonstrating compliance of CE with the requirements clauses specified in this Standard are described in Clauses 6.2 and 6.3.

Alternative methods of demonstrating compliance to those described may be used if the risk of passing non-compliant CE is not increased because of increased measurement uncertainty.

6.2 Test calls for Emergency service access

6.2.1 Making a test call for CE used in connection with a PMTS

6.2.1.1 Test configuration

Test calls for the Emergency Service Numbers should be made to the Emergency Call Person (ECP) for CE used in connection with a PMTS.

Where an identity module is present in the CE during testing, the identity module should have the Emergency Service Numbers 000 and 112 stored in the ECC field.

The CE should be configured as required for each operating state and operating on supported technology.

For Gateway Device test calls, the corded or wireless handset connected to CE that functions as a Gateway Device should be configured as required for each operating state and operating on supported technology.

Test calls only apply to CE operating in STS Access Mode.

Note 1: Test calls are those from Carriers, CE suppliers, test laboratories and the ACMA verifying compliance of the CE against the applicable requirements of this Standard.

6.2.1.2 Response from ECP

If the Emergency Call is supported by the Telecommunications Network supplying the PMTS, successful initiating of an Emergency Call to the Emergency Service Number will be indicated by the connection to either a Recorded Voice Announcement (RVA) or an ECP operator in the case of a call to the ECP for 000 and 112.

Note: At time of publication, the ECP for 000 and 112 is Telstra Corporation Ltd.
6.2.1.3 Response from network

If the Emergency Call is not supported by the Telecommunications Network supplying the PMTS and where the Telecommunications Network provides a network response back to the CE, successful initiating of an Emergency Call to the Emergency Service Number will be indicated by the connection to the appropriate network response which confirms that the CE was able to deliver the appropriate information to the air interface for the initiating of an Emergency Call to the Emergency Service Number, e.g. call diverts to a network IVR or network operator in the case of a call to 000 or 112.

6.2.1.4 Test call via SIM ECC field

Test calls to Emergency Service Numbers should be made to the Emergency Call Person (ECP) for CE used in connection with a PMTS.

Where an identity module is present in the CE during testing, the identity module should have the Emergency Service Numbers 000 and 112 stored in the ECC field.

The CE should be in the unlocked state and exclude call cases listed in Clause 5.2.2.1(b)(ii).

Insert an identity module supplied by a CSP and attempt dialling of Emergency Service Number 000. Verify successful test call to the ECP.

Whilst the identity module remains inserted, perform a second test call to the number 999.

Verify that the identity module supplied by a CSP prevents the successful initiation of the Emergency Call.

Test calls only apply to CE operating in STS Access Mode.

Note 1: Test calls are those from Carriers, CE suppliers, test laboratories and the ACMA verifying compliance of the CE against the applicable requirements of this Standard.

Note 2: Identity modules supplied by a CSP only contain the Emergency Numbers 000 and 112 numbers in the ECC field in accordance with CS36 requirements and do not contain any other numbers such as 08, 110, 999, 118 and 119.

6.2.2 Making a test call for CE used in connection with a Satellite Service

6.2.2.1 Test configuration

Test calls for the Emergency Service Numbers should be made to the ECP for CE used in connection with a particular Satellite Service.

If the CE requires an identity module for normal operation, then the test calls should be made with a test identity module fitted.

The CE should be in the unlocked state.
The PSTN handset or wireless phone connected to CE that functions as a Gateway Device should be in the unlocked state.

Test calls should be made from CE operating in STS Access Mode.

6.2.2.2 Response from ECP

If the Emergency Call is supported by the Telecommunications Network supplying the Satellite Service, successful initiating of an Emergency Call to the Emergency Service Number will be indicated by the connection to either a ECP RVA or an ECP operator in the case of a call to the ECP for 000.

6.2.2.3 Response from network

If the Emergency Call is not supported by the Telecommunications Network supplying the particular Satellite Service and where the Telecommunications Network provides a network response back to the CE, successful initiating of an Emergency Call to the Emergency Service Number will be indicated by the connection to the appropriate network response. This confirms that the CE was able to deliver the appropriate information to the air interface for the initiating of an Emergency Call to the Emergency Service Number, e.g. call diverts to a network IVR or network operator in the case of a call to 000.

6.2.3 Test call identification

A ‘this is a test call’ announcement should accompany a test call if the call is taken by an operator at the ECP for 000 and 112.

6.2.4 Test call notice

If more than 50 test calls are planned to be made to the ECP for 000 and 112 within one working day, then the ECP is to be notified in advance of the initiation of the test calls.

Note: Notification to the ECP for 000 and 112 can be via esap@team.telstra.com.

6.3 Acoustic Safety

6.3.1 Maximum RMS output

The maximum RMS output SPL should be measured using the circuit shown in Figure 1.

Note: There is no test required for instantaneous output levels.
6.3.2 Volume control
If a volume control can be used with the equipment under test, the volume control should be set to maximum for the tests.

6.3.3 Step test parameters
Measurements over the frequency range and subsequent signal level range should be performed as a series of step tests. The recommended step test parameters as specified in Appendix A are—

(a) Frequency steps to be in one-third octave intervals over the frequency range from 400 Hz to 900 Hz and in one-sixth octave intervals over the frequency range from 900 Hz to 4 kHz

(b) Tone duration: 500 ms

(c) Tone off time between steps: 3 seconds

(d) Level step size: 2 dB

(e) Number of levels: 7

6.3.4 Maximum digital code
The test signals should be applied so that the peaks of the highest level test signals produce the maximum digital code in the network simulator.
APPENDIX

A STEPPED PULSED STIMULI FOR TIME DEPENDENT LIMITING TEST

A1 Introduction

This Appendix defines the test parameters required to meet the requirements of the pulsed tone measurement method specified in Clause 6.3.3.

A series of tone pulses is provided at specific frequencies beginning at a relative low level and increasing over a number of steps up to the maximum level required for the product.

This sequence is repeated at each of seventeen specified test frequencies over the voice band.

Note: A separate compact disc (CD) has been produced to assist in providing the stepped pulse stimuli in order to ensure repeatable test procedures. The CD is available for purchase as a standalone item (as AS/ACIF S004 Supplement 1:2004) and it is provided free of additional charge with printed hardcopies of AS/ACIF S004 [3]. The CD and/or a printed hardcopy of AS/ACIF S004 [3] may be obtained from SAI Global, GPO Box 5420, Sydney NSW 2001 or via http://www.saiglobal.com

The CD contains three test sequences. The test sequence to use for this Standard is the one to suit the requirements of a digital product e.g. a mobile telephone. (Tracks 21 to 40 on the CD correspond to this test sequence.) A series of tone pulses is provided at specific frequencies beginning at a relative low level and increasing over a number of steps up to the maximum level required for the product.

The CD is recorded as a two channel recording. The test sequence is recorded on channel 1. The voice announcements are on channel 2 to advise and prompt the test officer as to which test is being run.

When performing the test, channel 1 is to be connected to a power amplifier capable of generating the required output level as a test signal source (refer to Figure 1) while channel 2 is to be connected to a monitor amplifier and speaker (or headphone) at a suitable listening level.

A sixty second alignment tone is provided at the beginning of the test sequence to set up the amplifier gain to the correct level. This is followed by ten seconds of silence before the test sequence continues beginning at the minimum level.
A2 Test frequency list

The frequency list in Table A1 is considered to adequately test a product over the voice band, particularly covering the frequencies where an acoustic shock is most likely to be induced, i.e. greater than 1 kHz.

<table>
<thead>
<tr>
<th>Test group</th>
<th>Frequency (Hz)</th>
<th>Test group</th>
<th>Frequency (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>410</td>
<td>10</td>
<td>1728</td>
</tr>
<tr>
<td>2</td>
<td>516</td>
<td>11</td>
<td>1939</td>
</tr>
<tr>
<td>3</td>
<td>649</td>
<td>12</td>
<td>2175</td>
</tr>
<tr>
<td>4</td>
<td>818</td>
<td>13</td>
<td>2441</td>
</tr>
<tr>
<td>5</td>
<td>972</td>
<td>14</td>
<td>2738</td>
</tr>
<tr>
<td>6</td>
<td>1090</td>
<td>15</td>
<td>3073</td>
</tr>
<tr>
<td>7</td>
<td>1223</td>
<td>16</td>
<td>3447</td>
</tr>
<tr>
<td>8</td>
<td>1372</td>
<td>17</td>
<td>3868</td>
</tr>
<tr>
<td>9</td>
<td>1540</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A3 Telephone products tracks

The test sequence for digital products is listed in Table A3, with the alignment tone for the test sequence specified in Table A2 below.

The maximum SPL (A weighted) during each of the sequences is to be recorded.

<table>
<thead>
<tr>
<th>Products track</th>
<th>Frequency (Hz)</th>
<th>Duration (s)</th>
<th>Voice prompt</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital</td>
<td>1040</td>
<td>60</td>
<td>‘Alignment tone’</td>
<td>Adjust for +3.0 dBm0 at test codec</td>
</tr>
</tbody>
</table>

Note: The ‘Products track’ and ‘Voice prompt’ columns in Table A2 apply to the separate CD referred to in the Note to Appendix A1 (i.e. AS/ACIF S004 Supplement 1:2013).
<table>
<thead>
<tr>
<th>Test Group 1</th>
<th>Test Groups 2 to 16</th>
<th>Test Group 17</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Level</strong></td>
<td><strong>Duration (s)</strong></td>
<td><strong>Voice announcement</strong></td>
</tr>
<tr>
<td>0 V</td>
<td>10</td>
<td>'410 Hz –9 dBm0'</td>
</tr>
<tr>
<td>-9 dB</td>
<td>0.5</td>
<td>'410 Hz –9 dBm0'</td>
</tr>
<tr>
<td>0 V</td>
<td>3</td>
<td>'410 Hz –7 dBm0'</td>
</tr>
<tr>
<td>-7 dB</td>
<td>0.5</td>
<td>'410 Hz –7 dBm0'</td>
</tr>
<tr>
<td>0 V</td>
<td>3</td>
<td>'410 Hz –5 dBm0'</td>
</tr>
<tr>
<td>-5 dB</td>
<td>0.5</td>
<td>'410 Hz –5 dBm0'</td>
</tr>
<tr>
<td>0 V</td>
<td>3</td>
<td>'410 Hz –3 dBm0'</td>
</tr>
<tr>
<td>-3 dB</td>
<td>0.5</td>
<td>'410 Hz –3 dBm0'</td>
</tr>
<tr>
<td>0 V</td>
<td>3</td>
<td>'410 Hz –1 dBm0'</td>
</tr>
<tr>
<td>-1 dB</td>
<td>0.5</td>
<td>'410 Hz –1 dBm0'</td>
</tr>
<tr>
<td>0 V</td>
<td>3</td>
<td>'410 Hz +1 dBm0'</td>
</tr>
<tr>
<td>+1 dB</td>
<td>0.5</td>
<td>'410 Hz +1 dBm0'</td>
</tr>
<tr>
<td>0 V</td>
<td>3</td>
<td>'410 Hz +3 dBm0'</td>
</tr>
<tr>
<td>+3 dB</td>
<td>0.5</td>
<td>'410 Hz +3 dBm0'</td>
</tr>
<tr>
<td>0 V</td>
<td>3</td>
<td>'410 Hz +10 dBm0'</td>
</tr>
<tr>
<td>+10 dB</td>
<td>0.5</td>
<td>'410 Hz +10 dBm0'</td>
</tr>
<tr>
<td>+10 dB</td>
<td>0.5</td>
<td>'410 Hz +10 dBm0'</td>
</tr>
</tbody>
</table>

Note: The +10 dBm0 signal is provided to ensure that the codec is overloaded and will clip the signal so that it is close to a square wave which will provide more energy than a sine wave.
### APPENDIX

#### B ETSI Standard references (INFORMATIVE)

The following table provides the ETSI Technical Standard clause references to each of the Emergency Service Number requirements in this Standard. These references have been provided to assist the reader in identifying the source and its relationship to each of the requirements in this Standard.

<table>
<thead>
<tr>
<th>AS/CA S042.1 requirement</th>
<th>ETSI standard requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.2.1</td>
<td>Emergency service number</td>
</tr>
<tr>
<td>5.2.2.1(a) Firmware</td>
<td>The storage of '000' as the Emergency Service Number in the CE is specified as a <em>shall</em> requirement in clause 10.1.1 of ETSI TS 122 101 [14]. Identification of '000' as the Emergency Service Number in the case of the identity module not being present is specified as a <em>shall</em> requirement in clause 10.1.1 of ETSI TS 122 101 [14].</td>
</tr>
</tbody>
</table>
| 5.2.2.1(b) Mobile identity | The use of the IMEI as a mobile identity during the initiation of an Emergency Call in the case of the identity module not being present is specified as a *shall* requirement in ETSI TS 124 008 [16] (for GSM and UTRA) and clause 5.5.1.2.2 of ETSI TS 124 301 [19] (for E-UTRA). The use of the IMEI as a mobile identity during the initiation of an Emergency Call in the case of the identity module being blocked and/or invalidated is specified as a *shall* requirement in clause 4.5.1.1 of ETSI TS 124 008 [16] (for GSM and UTRA) and clause 5.5.1.2.2 of ETSI TS 124 301 [19] (for E-UTRA). The use of the IMEI as a mobile identity during the initiation of an Emergency Call in the case of IMS Emergency session set up with emergency registration is specified as a *shall* requirement in clause 5.1.6.8.2 of ETSI TS 124 229 [18]. The use of IMSI/TMSI/GUTI as a mobile identity during the initiation of an Emergency Call in the case of the identity module being present is specified as a *shall* requirement in clause 4.5.1.1 of ETSI TS 124 008 [16] (for GSM and UTRA). The use of IMSI/GUTI as a mobile identity during the initiation of an Emergency Call in the case of the identity module being present is specified as a *shall* requirement in clause 5.5.1.2.2 of ETSI TS 124 301 [19] (for E-UTRA). The use of IMSI as a mobile identity during the initiation of an Emergency Call in the case of the identity module being present (IMS Emergency session set up within an emergency or non-
<table>
<thead>
<tr>
<th>AS/CA S042.1 requirement</th>
<th>ETSI standard requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>emergency registration) is specified as a ‘shall’ requirement in clauses 5.1.6.8.3 and 5.1.6.8.4 of ETSI TS 124 229 [18].</td>
<td></td>
</tr>
<tr>
<td>5.2.2.1(c) ECC field</td>
<td>The requirement to read the ECC field on the identity module and apply ‘000’ or ‘112’ (if stored in the ECC field) as an Emergency Service Number is specified as a ‘shall’ requirement in clause 10.1.1 of ETSI TS 122 101 [14] and clause 7.3.1.1 of ETSI TS 131 111 [20].</td>
</tr>
<tr>
<td>5.2.2.1(d) Numeric keys</td>
<td>User input mechanisms to initiate Emergency Call is outside the scope of the 3GPP/ETSI Standards.</td>
</tr>
<tr>
<td>5.2.2.1(e) Emergency call safeguard</td>
<td>User input mechanisms to initiate Emergency Call is outside the scope of the 3GPP/ETSI Standards.</td>
</tr>
<tr>
<td>5.2.2.1(f) Locks</td>
<td>The initiation of an Emergency Call is specified as a ‘shall’ requirement in clause 10.1 of ETSI TS 122 101 [14], independent of the CE state.</td>
</tr>
<tr>
<td>5.2.2.2 Special flags and special signalling</td>
<td>The identification of ‘000’ as an Emergency Service Number in the case of the identity module not being present or stored as an Emergency Service Number in the ECC field is specified as a ‘shall’ requirement in clause 10.1.1 of ETSI TS 122 101 [14]. In the above case, calls to ‘000’ must be initiated as an emergency call, specified as a ‘shall’ requirement in clause 4.5.1.1 of ETSI TS 124 008 [16] (for GSM and UTRA) and clause 5.5.1.1 of ETSI TS 124 301 [19] (for E-UTRA).</td>
</tr>
<tr>
<td>5.2.2.2.1 Emergency service numbers 000 and 112</td>
<td></td>
</tr>
</tbody>
</table>
PARTICIPANTS

The Working Committee responsible for the revisions made to this Standard consisted of the following organisations:

<table>
<thead>
<tr>
<th>Organisation</th>
<th>Membership</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACMA</td>
<td>Non-Voting</td>
</tr>
<tr>
<td>Apple</td>
<td>Voting</td>
</tr>
<tr>
<td>Comtest Laboratories</td>
<td>Voting</td>
</tr>
<tr>
<td>Hewlett Packard</td>
<td>Voting</td>
</tr>
<tr>
<td>Huawei</td>
<td>Voting</td>
</tr>
<tr>
<td>Market Access</td>
<td>Voting</td>
</tr>
<tr>
<td>Motorola Mobility</td>
<td>Voting</td>
</tr>
<tr>
<td>Samsung</td>
<td>Voting</td>
</tr>
<tr>
<td>Singtel Optus</td>
<td>Voting</td>
</tr>
<tr>
<td>Stanimore</td>
<td>Non-Voting</td>
</tr>
<tr>
<td>Telstra</td>
<td>Voting</td>
</tr>
<tr>
<td>Vodafone Hutchison Australia</td>
<td>Voting</td>
</tr>
</tbody>
</table>

This Working Committee was chaired by Steve Vodicka of Telstra. Mike Johns of Communications Alliance provided project management support.
Communications Alliance was formed in 2006 to provide a unified voice for the Australian communications industry and to lead it into the next generation of converging networks, technologies and services.

In pursuing its goals, Communications Alliance offers a forum for the industry to make coherent and constructive contributions to policy development and debate.

Communications Alliance seeks to facilitate open, effective and ethical competition between service providers while ensuring efficient, safe operation of networks, the provision of innovative services and the enhancement of consumer outcomes.

It is committed to the achievement of the policy objective of the Telecommunications Act 1997 - the greatest practicable use of industry self-regulation without imposing undue financial and administrative burdens on industry.
Care should be taken to ensure the material used is from the current version of the Standard or Industry Code and that it is updated whenever the Standard or Code is amended or revised. The number and date of the Standard or Code should therefore be clearly identified. If in doubt please contact Communications Alliance.